Jahn-Teller distortion and coordination number four

The Jahn-Teller Theorem

The Jahn-Teller (J-T) theorem states that in molecules/ ions that have a degenerate ground-state, the molecule/ion will distort to remove the degeneracy. This is a fancy way of saying that when orbitals in the same level are occupied by different numbers of electrons, this will lead to distortion of the molecule. For us, what is important is that if the two orbitals of the \boldsymbol{e}_{g} level have different numbers of electrons, this will lead to J-T distortion. $\mathrm{Cu}(\mathrm{II})$ with its d^{9} configuration is degenerate and has $\mathrm{J}-\mathrm{T}$ distortion:

Structural effects of Jahn-Teller distortion

no J-T distortion
J -T distortion lengthens axial Cu-O's

Splitting of the d-subshell by JahnTeller distortion

The CF view of the splitting of the d-orbitals is that those aligned with the two more distant donor atoms along the z-coordinate experience less repulsion and so drop in energy $\left(d_{x z}, d_{y z}\right.$, and $\left.d_{z} 2\right)$, while those closer to the
in-plane
energy

$\mathrm{Cu}(\mathrm{II})$ after J-T distortion donor atoms
$\left(d_{x y}, d_{x}{ }^{2}-2\right)$ rise in energy. An MO view of the splitting is that the $d x^{2}-y^{2}$ in particular overlaps more strongly with the ligand donor orbitals, and so is raised in energy. Note that all d-orbitals with a ' z ' in the subscript drop in energy.

Structural effects of Jahn-Teller distortion on $\left[\mathrm{Cu}(\mathrm{en})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$

Structural effects of Jahn-Teller distortion on $\left[\mathrm{Cu}(\mathrm{en})_{3}\right]^{2+}$

Thermodynamic effects of Jahn-Teller distortion:

d-electron configurations that lead to Jahn-Teller distortion:

energy

$$
\begin{aligned}
& \uparrow-e_{g} \quad \uparrow-e_{g} \quad \xlongequal[\downarrow]{-} e_{g} \quad \uparrow \downarrow \uparrow e_{g}
\end{aligned}
$$

> Cr (II) Mn (III)
> $\mathrm{Co}(\mathrm{II}) \quad \mathrm{Co}(\mathrm{I}), \mathrm{Ni}(\mathrm{II}), \mathrm{Pd}(\mathrm{II}) \quad \mathrm{Cu}(\mathrm{II})$
> $\mathrm{Ni}(\mathrm{III}) \quad \mathrm{Rh}(\mathrm{I}), \mathrm{Pt}(\mathrm{II}), \mathrm{Au}(\mathrm{III}) \quad \mathrm{Ag}(\mathrm{II})$

Square planar complexes

Jahn-Teller distortion leads to tetragonal distortion of the octahedron, with the extreme of tetragonal distortion being the complete loss of axial ligands, and formation of a squareplanar complex. Tetragonal distortion is the stretching of the axial M-L bonds, and shortening of the in-plane bonds. $\mathrm{Cu}(\mathrm{II})$ is usually tetragonally distorted, while low-spin $\mathrm{Ni}(\mathrm{II})$ is usually square planar:

regular octahedron tetragonal square plane distortion

Square planar complexes - the low-spin d^{8} metal ions

All high-spin d^{8} metal ions are octahedral (or tetrahedral), but the low-spin d^{8} metal ions are all square planar.

Occurrence of Square planar complexes in low-spin d ${ }^{8}$ metal ions

d^{8} metal ions:

Group:
I

Obviously the group $9 \mathrm{M}(\mathrm{I})$ ions, the group $10 \mathrm{M}(\mathrm{II})$ ions, and the group 11 M (III) ions are d^{8} metal ions. d^{8} metal ions must be low-spin to become square planar. Since Δ increases down groups in the periodic table, it is larger for the heavier members of each group. Thus, all Pt(II) complexes are low-spin and square-planar, while for $\mathrm{Ni}(\mathrm{II})$ most are high-spin octahedral except for ligands high in the spectrochemical series, so that $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is square planar.

Occurrence of Square planar complexes in low-spin d ${ }^{8}$ metal ions

Because of increasing Δ down groups, most $\mathrm{Ni}(\mathrm{II})$ complexes are highspin octahedral, whereas virtually all Pt(II) complexes are low-spin square planar. For $\mathrm{Pd}(\mathrm{II})$, the only high-spin complex is $\left[\mathrm{PdF}_{6}\right]^{4-}$ (and PdF_{2}, which has Pd in an octahedron of bridging F^{-}groups), while all others are low-spin square planar. Some examples are:

VSEPR view of d^{8} square planar complexes

The filled $d_{z}{ }^{2}$ orbital occupies two coordination sites in the VSEPR view, and so the four donor atoms occupy the plane:

$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
The structure of $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ can be compared to that of square planar $\left[\mathrm{IF}_{4}\right]^{-}$, where from VSEPR two lone pairs occupy the axial sites.

Tetrahedral complexes:

Tetrahedral complexes are favored with metal ions that have a low CFSE, which is particularly true for $\mathrm{d}^{10} \mathrm{Zn}(I I)$, which has CFSE = zero. Ligands that are very low in the spectrochemical series also tend to produce tetrahedral complexes, such as Cl , Br^{-}, and I^{-}. Thus, $\mathrm{Ni}(\mathrm{II})$ that has high CFSE $=1.2 \Delta$ is very reluctant to form tetrahedral complexes, but it forms tetrahedral complexes such as $\left[\mathrm{NiCl}_{4}\right]^{2-}$ and $\left[\mathrm{Nil}_{4}\right]^{2-}$. If we look at the spectrochemical series in relation to the geometry of complexes of $\mathrm{Ni}(\mathrm{II})$, we have:

low CFSE \qquad \rightarrow high CFSE

Splitting of the d-orbitals in tetrahedral complexes

The donor atoms in tetrahedral coordination do not overlap well with the metal d-orbitals, so that $\Delta_{\text {tet }}$ is much smaller than $\Delta_{\text {oct }}$ in octahedral complexes with the same ligands, e.g. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ versus $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$. Calculation suggests $\Delta_{\text {tet }} \approx 4 / 9 \Delta_{\text {oct }}$ in that situation. Note the lack of a g in the subscripts $\left(\boldsymbol{t}_{2}, \boldsymbol{e}\right)$ because T_{d} complexes do not have a center of symmetry.

